If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6k^2+7k-49=0
a = 6; b = 7; c = -49;
Δ = b2-4ac
Δ = 72-4·6·(-49)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-35}{2*6}=\frac{-42}{12} =-3+1/2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+35}{2*6}=\frac{28}{12} =2+1/3 $
| -2(5w-4)+3w=12 | | 4(1/2)+q=9(1/2) | | 3/8x-5/8x+14=6 | | 3/8x-5/8+14=6 | | 3s-4=2s+6 | | b^-4=81 | | ((3a-2)/7)-((3+2a)/35)=6 | | 2(2p+3)=-6p+16 | | 4(x-3)-2x=-8x | | 2/3w-9=5 | | x+(-6)+3x=4x+6 | | 5x+x=31 | | -x+4=-x+7 | | 6t-7+4t=23 | | 2(3x+1)=7x-5 | | -4w+12=-30 | | 6-2/5y=14 | | 1/12y-5=-16 | | 2/5y=11/5 | | x-6+3x=4x+6 | | x+(2+4)+3=4x+6 | | 12=w/2+19 | | 4*x=17 | | 2x-7=14x-31 | | 4x^-12x+9=0 | | 2u/3=48 | | -6n-20=-2n+4(1-3n0 | | -3(n(+5=12 | | 3y-9=y+15 | | 3x^2+8=296 | | 3(2w-1)=10 | | 7(q+4)=8 |